

Metal-Organic Frameworks

Tobias Nitsche Moritz Klammler

13. Januar 2012

Fortgeschrittenenpraktikum Anorganische Chemie

KIT – Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft

www.kit.edu

Bilder, deren Rechteinhaber uns keine Erlaubnis erteilt haben, sie mit diesem Vortrag online zu stellen, mussten leider durch ein graues Rechteck ersetzt werden. Sie sind in den jeweils angegebenen Publikationen nachzusehen.

Die Grafik von IRMOF-1 stammt von Tony Boehle und wurde von ihm für gemeinfrei erklärt. Sie ist in voller Auflösung unter http://commons.wikimedia.org/wiki/File:IRMOF-1_wiki.png erhältlich. Jene von MOF-210 stammt von http://www.sciencemag.org/content/329/5990/424.full und wurde zur Verwendung für die Lehre freigegeben. Wir gehen davon aus, dass die Reproduktion von Diagrammen zum Zweck die Messwerte zu diskutieren als Verwendung im Rahem des Zitatrechts gedeckt ist.

Die Autoren sind unter moritz.klammler@gmail.com erreichbar.

Einleitung

2 Eigenschaften

3 Synthese

4 (Mögliche) Anwendungen

T. Nitsche & M. Klammler (AC-F); Metal-Organic Frameworks. WS 2011/12.

Was sind MOFs?

- Ein, zwei- oder dreidimensionale Netzwerke
- Aufgebaut aus Metallzentren und organischen Linkern
- Begriff üblicherweise verwendet für dreidimensionale, poröse, kristalline Netzwerke

Nomenklatur

- Stoffabkürzungen verschieden deklariert je nach Arbeitsgruppe
- MOF (metal-organic framework)
- HKUST(Hong Kong University of Science and Technology)
- Durchnummerierung nach Zeitpunkt der Entdeckung

Modularer Aufbau

MOF-5

- Metallzentren, hier [Zn₄O]⁶⁺ werden mit organischen Linkern zu SBUs (secondary building units) verknüpft
- SBUs bilden durch Verknüpfung untereinander das 3-dimensionale Netzwerk

Porenfunktionalität und -größe

Einstellbar durch Wahl des Linkers

Yaghi, O. M. u. a. Science 2002, 295, 469-472

Interpenetration

- Einlagerung von SBUs in die Poren
- \Rightarrow Durchdringung der Netze
- Verringerung des Porenvolumens

Tranchemontagne, D. J. u. a. Tetrahedron 2008, 64, 8553-8557

Größere Poren über multifunktionelle Linker (MOF-210)

Einleitung

2 Eigenschaften

- Dichte
- Adsorptionsfähigkeit
- Phasenstabilität
- Kristallographische Eigenschaften

3 Synthese

4 (Mögliche) Anwendungen

Dichte

- Sehr niedrig aufgrund der Hohlräume
- IRMOF-16 mit $0.21 \, {
 m g} \, {
 m cm}^{-3}$ (Yaghi u. a., 2002)
- Niedrigste bekannte Dichte f
 ür Kristall
- Porendurchmesser 2.88 nm

Yaghi, O. M. u. a. Science 2002, 295, 469-472

Porosität

IUPAC Definition

- $< 2 \, \mathrm{nm}$ Mikroporen
- $2 \operatorname{nm} \dots 50 \operatorname{nm}$ Mesoporen
- $>50\,\mathrm{nm}$ Makroporen

Bsp. IRMOF-6:	Vergleiche:	
• fixed diameter $= 1.86 \mathrm{nm}$	 H₂ 	$0.293\mathrm{nm}$
• free diameter $= 0.93 \mathrm{nm}$	CH ₄	$0.382\mathrm{nm}$

IUPAC in Compendium of Chemical Terminology (the "Gold Book"), McNaught, A. D., Wilkinson, A., Hrsg., 2.3; Blackwell Scientific Publications: Oxford, 1997

Eigenschaften | Adsorptionsfähigkeit T. Nitsche & M. Klammler (AC-F); Metal-Organic Frameworks. WS 2011/12.

Spezifische Oberfläche / spezifisches Volumen

Größe	per mass.	per vol.	
$v_{ads.}$	$V_{\rm ads.}/m$	$V_{\sf ads.}/V_{\sf tot.}$	
$a_{ads.}$	$A_{ads.}/m$	$A_{\rm ads.}/V_{\rm tot.}$	

Messung von

- *m* Wägung
- $V_{\text{tot.}}$ pyknometrisch mit He
- $A_{ads.}, V_{ads.} \dots N_2$ Adsoption

Adsorptionsisothermen

Langmuir

$$\Theta = \frac{Kp}{1+Kp}$$

BET

$$\Theta = \frac{Cp}{(p_0 - p)(1 + (C - 1)/(p/p_0))}$$

t-Plot

$$t = \Theta d_0 = a \ln \left(\frac{p_0}{p}\right)^{-1/\ell}$$

Eigenschaften | Adsorptionsfähigkeit T. Nitsche & M. Klammler (AC-F); Metal-Organic Frameworks. WS 2011/12. Ausdruck

Kapillarkondensation

Kelvin Gleichung

$$p = p_0 \exp\left(\frac{2\gamma V_{\rm m}}{rRT}\right) = p_0 \exp\left(-\frac{4\gamma V_{\rm m}}{dRT}\right)$$

CCl₄ in IRMOF-6 @ RT

Yaghi, O. M. u. a. Science 2002, 295, 469-472

Eigenschaften | Adsorptionsfähigkeit T. Nitsche & M. Klammler (AC-F); Metal-Organic Frameworks. WS 2011/12.

Adsorptions- / Desorptions Hysteresis

T. Nitsche & M. Klammler (AC-F); Metal-Organic Frameworks. WS 2011/12.

Phasenstabilität

Edgar, M. u. a. Chemistry - A European Journal 2001, 7, 5168-5175

Eigenschaften | Phasenstabilität

T. Nitsche & M. Klammler (AC-F); Metal-Organic Frameworks. WS 2011/12.

Ausdruck

Kristallographische Eigenschaften / PXRD

- Berechnen der gewünschten Struktur.
- 2 Simulation eines Beugungsmusters anhand der berechneten Struktur.
- 3 Untersuchung des Produkts.
- Aückrechnen der Struktur aus den gemessenen Daten.
- Simulation eines Beugungsmusters anhand der rückgerechneten Struktur.
- G Vergleich der beiden Muster.
- Vergleich mit dem simulierten Muster aus der berechneten Struktur.

Eigenschaften | Kristallographische Eigenschaften T. Nitsche & M. Klammler (AC-F): Metal-Organic Frameworks, WS 2011/12.

PXRD IRMOF-0

Tranchemontagne, D. J. u. a. Tetrahedron 2008, 64, 8553-8557

Eigenschaften | Kristallographische Eigenschaften T. Nitsche & M. Klammler (AC-F); Metal-Organic Frameworks. WS 2011/12. Ausdruck

Einleitung

2 Eigenschaften

3 Synthese

- Synthese von MOF-5
- Control SBU Approach (CSA)
- Alternative Synthesemöglichkeiten
- Postsynthetische Modifikationen

4 (Mögliche) Anwendungen

Synthese

Ziele der Synthese

- kristallines Produkt
- nur ein Gitter

Lösungsansätze

- Labile Metall-Ligand-Bindung
- Verwendung von starren Linkern

Ersetzung der DMF-Moleküle durch Chloroform

Vollständige Entfernung des Chloroforms durch Vakuumdestillation

Control SBU Approach (CSA)

Enantiomere von Be₄O(CH₃COO)₆

Hausdorf, S. u. a. Journal of the American Chemical Society 2010, 132, 10978-10981

Synthese | Control SBU Approach (CSA) T. Nitsche & M. Klammler (AC-F); Metal-Organic Frameworks. WS 2011/12. Ausdruck

Alternative Synthesemöglichkeiten

- Mikrowellengeführte solvothermische Synthese
- Synthese bei RT

Postsynthetische Modifikationen

- kovalente Modifikation
 - Addition funktioneller Gruppen an den Linker
- koordinative kovalente Modifikationen
 - Modifikation des Metallzentrums
 - Metallierung von funktionellen Gruppen

Cohen, M. S.; Wang, Z. Chem. Soc. Rev. 2009, 38, 1315–1329

Einleitung

2 Eigenschaften

3 Synthese

4 (Mögliche) Anwendungen
Gasspeicher
Katalyse
Sensorik

Katalyse

- Reaktion in wohldefinierter Umgebung
- Verwendung chiraler Linker \Rightarrow Chiraler Katalysator
- Katalytisch aktive (Metall-)nanopartikel in den Poren

Sensorik

- Fluoreszierende Eigenschaften durch Metall-Linker-Kombination
- Floureszenzlöschung durch Gastatome
- Richtig gewählte Linker machen aus floureszierendem MOF Photosensor

Sprengstoffsensor (Lan u. a., 2009)

2, 4-Dinitrotoulol (aus TNT)

 $2, 3\text{-}\mathsf{Dimethyl-} 2, 3\text{-}\mathsf{dinitrobutan} \text{ (aus Plastiksprengstoff)}$

[Zn₂(bpdc)₂(bpee)]

84 %-ige Floureszenzlöschung durch Sprengstoffdämpfe

Lan, A. u. a. Angewandte Chemie International Edition 2009, 48, 2334–2338

Zusammenfassung

- Modularer Aufbau (M-Zentren / O-Linker)
- Extreme Porosität und Dichte
- Potentiell vielfältige Anwendungsmöglichkeiten und maßgeschneiderte MOFs
- Noch weitere Forschung bis zur Marktreife

Literaturempfehlungen

Metal-organic frameworks : applications from catalysis to gas storage; Farrusseng, D., Hrsg.; Wiley-VCH: Weinheim, 2011

Roque-Malherbe, R. M. A., Adsorption and diffusion in nanoporous materials; CRC Press: Boca Raton, 2007

Kitagawa, S. u. a. Angewandte Chemie 2004, 116, 2388-2430