THEORETISCHE GRUNDLAGEN DER INFORMATIK

Tutorium 7 Wintersemester 2014/15

MORITZ KLAMMLER 10. FEBRUAR 2015

Organisatorisches

- Ihr könnt das korrigierte letzte Übungsblatt vermutlich ab Freitag bei den Übungsleitern im Büro abholen.
- Schreibt mir ein E-Mail moritz.klammler@student.kit.edu, wenn Ihr Eure Punkte wissen wollt.

Tagesthemen

- Informationstheorie
- Zusammenfassung & Wiederholung
- Klausur-Übungsaufgaben

• ...

Quelle

Sei Σ ein Alphabet und peine Wahrscheinlichkeitsverteilung auf $\Sigma,$ also

$$\forall \sigma \in \Sigma : 0 \leq p(\sigma) \leq 1 \qquad \text{ und } \qquad \sum_{\sigma \in \Sigma} p(\sigma) = 1 \ .$$

Eine **gedächtnislose Quelle** ist ein Gerät, das einen (potentiell unendlichen) Strom von Zeichen aus Σ erzeugt, wobei die unabhängige Wahrscheinlichkeit dafür, dass als nächstes Zeichen $\sigma \in \Sigma$ produziert wird, $p(\sigma)$ ist.

Ist das eine gedächtnislose Quelle?

- · Werfen einer fairen Münze.
- Werfen einer gezinkten Münze.
- Ziehen eines "Lotto-Balls". Wenn der Behälter leer ist, werden alle Bälle wieder eingefüllt und von vorne begonnen.
- · Die Konstante 4.
- · Messen der aktuellen Temperatur.
- Aufrufen der Funktion rand (aus der C-Standardbibliothek).

Ist das eine gedächtnislose Quelle?

✓ Würfeln (mit einem fairen Würfel).

$$\checkmark \quad \Sigma = \{ \odot, \odot, \odot, \odot, \odot, \odot, \odot \}$$

$$\checkmark \quad p(\boxdot) = p(\boxdot) = p(\boxdot) = p(\boxdot) = p(\boxdot) = p(\boxdot) = \frac{1}{6}$$

✓ Werfen einer gezinkten Münze.

$$\checkmark \quad \Sigma = \{(\widehat{\epsilon}), (\widehat{\bullet})\}$$

$$\checkmark \quad p(\textcircled{\textcircled{\epsilon}}) = \tfrac{1}{2} + \delta \text{ und } p(\textcircled{\textcircled{\bullet}}) = \tfrac{1}{2} - \delta \text{ für ein festes } \delta \in [-\tfrac{1}{2}, \tfrac{1}{2}]$$

X Ziehen eines "Lotto-Balls". Wenn der Behälter leer ist, werden alle Bälle wieder eingefüllt und von vorne begonnen.

✓
$$\Sigma = \{1, ..., 49\}$$

X Die Wahrscheinlichkeiten sind nicht unabhängig

- Die Konstante 4.
- $\checkmark \Sigma = \{4\}$
 - p(4) = 1
- X Messen der aktuellen Temperatur.
 - $ot\hspace{-0.5cm} egin{array}{l}
 ot\hspace{-0.5cm} \mathbb{R} & \text{ist kein Alphabet (der Wertebereich eines double allerdings schon...)}
 \end{array}$
 - X Temperaturmesungen sind keine stochasisch unabhängigen Ereignisse
- Aufrufen der Funktion rand (aus der C-Standardbibliothek).
 - $\checkmark \quad \Sigma = \{0, 1, \dots, \mathtt{RAND_MAX}\}$
 - p ist "kompliziert"…

Information

Sei Q eine gedächtnislose Quelle, die eine Folge von Zeichen aus einem Alphabet Σ ausgibt, wobei die unabhängige Wahrscheinlichkeit dafür, dass ein Zeichen $\sigma \in \Sigma$ ausgegeben wird, $0 \le p(\sigma) \le 1$ sei.

Die **Information**, die ein von Q emittiertes Zeichen $\sigma \in \Sigma$ trägt, ist

$$I_{\sigma}(Q) = -\log(p(\sigma))$$
.

Sofern der Logarithmus zur Basis 2 verwendet wird, ist die Einheit der Information Bit.

Entropie

Sei Q eine gedächtnislose Quelle, die eine Folge von Zeichen aus einem Alphabet Σ ausgibt, wobei die unabhängige Wahrscheinlichkeit dafür, dass ein Zeichen $\sigma \in \Sigma$ ausgegeben wird, $0 \le p(\sigma) \le 1$ sei.

Die Entropie der Quelle ist

$$H(Q) = -\sum_{\sigma \in \Sigma} p(\sigma) \log(p(\sigma))$$

wobei die Konvention " $0 \log(0) = 0$ " gilt.

Die Entropie ist also der Erwartungswert der Information. Sofern der Logarithmus zur Basis 2 verwendet wird, ist die Einheit der Entropie Bit.

Entropie

Sei Q eine gedächtnislose Quelle, die Zeichen aus einen Alphabet Σ mit Wahrscheinlichkeit p emittiert, und $|\Sigma|=n$.

- $0 \le H(Q) \le \log(n)$
- H(Q) wird minimal für

$$p(\sigma) \to \begin{cases} 1, & \sigma = \sigma_0 \\ 0, & \text{sonst} \end{cases}$$

für ein $\sigma_0 \in \Sigma$.

• H(Q) wird maximal für $p(\sigma) \to \frac{1}{n}$ für alle $\sigma \in \Sigma$

Hamming-Distanz

Sei Σ ein Alphabet und $x,y \in \Sigma^n$ für $n \in \mathbb{N}$.

Die **Hamming-Distanz** zwischen x und y ist definiert als

$$d(x,y) = \sum_{i=1}^{n} (1 - \delta(x_i, y_i))$$

wobei $w_i \in \Sigma$ das *i*-te Symbol in w für $w \in \Sigma^*$ bezeichne.

•
$$d(w, w) = 0 \quad \forall w \in \Sigma^*$$

•
$$d(\mathtt{TGI},\mathtt{GBI}) = 2$$

•
$$d(1,1) = 0$$

•
$$d(\text{H2SO4}, \text{H3PO4}) = 2$$

•
$$d(0,1)=1$$

•
$$d(\texttt{Alf},\texttt{red}) = 3$$

Quellcodierung

Sei Q eine gedächtnislose Quelle, die Zeichen aus einem Alpgabet Σ emittiert. Eine **Quellcodierung** ist eine berechenbare bijektive Funktion $f_{\rm s}:\Sigma^+\to\Gamma^+$ für ein Alphabet Γ .

 $f_{\rm s}(Q)$ ergibt eine neue Quelle, die den von Q erzeugten Zeichenstrom codiert mit $f_{\rm s}$ ausgibt.

Eine gute Quellcodierung komprimiert die Daten. Das wird erreicht, wenn für möglichst alle $w \in \Gamma^+$ gilt, dass $w \in \text{img}(f_s)$. Man ist daher bestrebt, f_s so zu wählen, dass

$$\frac{H(f_{\mathsf{s}}(Q))}{\log(|\Gamma|)}$$

maximal wird.

Kanalcodierung

Sei Q eine gedächtnislose Quelle, die Zeichen aus einem Alpgabet Σ emittiert. Eine **Kanalcodierung** ist eine berechenbare bijektive Funktion $f_c: \Sigma^+ \to \Gamma^+$ für ein Alphabet Γ .

 $f_{\rm c}(Q)$ ergibt eine neue Quelle, die den von Q erzeugten Zeichenstrom codiert mit $f_{\rm c}$ ausgibt.

Eine gute Kanalcodierung spreizt den Code-Raum gleichmäßig (fügt Redundanz ein). Man ist daher bestrebt, f_c so zu wählen, dass

$$d_{\min} = \min \{ d(w_1, w_2) : w_1, w_2 \in \operatorname{img}(f_{\mathsf{c}}) \land w_1 \neq w_2 \}$$

maximal und gleichzeitig die Entropie nicht unnötig weit reduziert wird.

Kanal<u>de</u>codierung

Seien Σ und Γ Alphabete, $n,m \in \mathbb{N}$ und $f_c : \Sigma^n \to \Gamma^m$ ein Kanalcode mit $\operatorname{img}(f_c) = C \subseteq \Gamma^m$ und Minimaldistanz d_{\min} . Sei $c \in \Gamma^m$ ein empfangenes Wort.

Fall 1 $c \in C$: decodiere c zu $f_c^{-1}(c) = w \in \Sigma^n$

Fall 2 $c \notin C$:

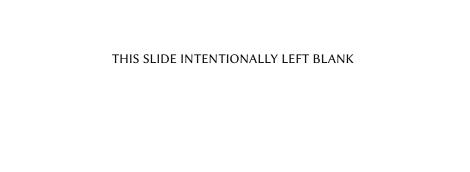
- **Fehlererkennung** Breche Decodierung mit Fehler ab. Dieses Vorgehen erlaubt es, Übertragungsfehler, die bis zu $d_{\min}-1$ Zeichen "kippen", zu erkennen.
- **Fehlerkorrektur** Decodiere zu jenem $w \in \Sigma^n$, das $d(f_c(c), w)$ minimiert (*Maximum-Likelyhood Decoding*). Dieses Vorgehen erlaubt es, Übertragungsfehler, die bis zu $\lfloor (d_{\min} 1)/2 \rfloor$ Zeichen "kippen", zu korrigieren.

Quellcodierung

- erhöht Entropie
- Setzt Wissen über die Quelle voraus
- Decodierung: idR einfach (LUTs, DFAs, ...)
- Beispiele:
 - UTF-8
 - Gzip
 - Huffman-Codes

Kanalcodierung

- · erhöht Redundanz...
- ...aber ohne zu viel Entropie zu opfern
- Setzt Wissen über den Kanal voraus
- Decodierung (mit Fehlerkorrektur): iA NP-schwer (Maximum-Likelyhood)
- Beispiele:
 - Vervielfachung
 - Hamming-Codes



... eine Sprache L regulär ist?

... eine Sprache L regulär ist?

- ✓ Endlichen Automaten (Akzeptor) $\mathcal A$ angeben, sodass $L(\mathcal A) = L$
- ✓ Regulären Ausdruck für L angeben
- ✓ Rechtslineare Grammatik G angeben, sodass L(G) = L
- Mittels Pumping-Lemma

... eine Sprache *L* nicht regulär ist?

... eine Sprache *L* nicht regulär ist?

 \checkmark Annehmen, dass L regulär ist, und mittels Pumping-Lemma für reguläre Sprachen zum Widerspruch führen

... ein(e) X mit $X \in \{$ endlicher Automat, Kellerautomat, Turingmaschine $\}$ [nicht] deterministisch ist?

... $ein(e) X mit X \in \{endlicher Automat, Kellerautomat, Turingmaschine\}$ [nicht] deterministisch ist?

✓ Nachschauen, ob es Zustandsübergänge mit Entscheidungsspielraum gibt

... ein endlicher Automat $\mathcal{A} = (Q, \Sigma, q_0, F)$ [nicht] minimal ist?

... ein endlicher Automat $\mathcal{A} = (Q, \Sigma, q_0, F)$ [nicht] minimal ist?

✓ Minimierungsverfahren anwenden, um Äquivalenzklassenautomat $\mathcal{H}'=(Q',\Sigma,q_0',F')$ zu erhalten, und prüfen, ob |Q'|<|Q|

... eine Sprache *L* kontextfrei ist?

... eine Sprache *L* kontextfrei ist?

- ✓ PDA \mathcal{K} angeben, sodass $L(\mathcal{K}) = L$
- ✓ Kontextfreie Grammatik G angeben, sodass L(G) = L
- Mittels Pumping-Lemma

... eine Sprache *L* nicht kontextfrei ist?

... eine Sprache *L* nicht kontextfrei ist?

- ✓ Annehmen, dass L kontextfrei ist, und mittels Pumping-Lemma für kontextfreie Sprachen zum Widerspruch führen
- ✓ Falls das nicht funktioniert, Ogdens Lemma versuchen

... eine Grammatik G = (T, V, S, P) ein Wort $w \in T^*$ erzeugen kann?

... eine Grammatik G = (T, V, S, P) ein Wort $w \in T^*$ erzeugen kann?

- ✓ Explizite Ableitung $S \Rightarrow^* w$ angeben
- ✓ Für allgemeines w mittels Induktionsbeweis
- ✓ Für kontextfreie Grammatik: CYK-Algorithmus (ggf G zunächst in CNF überführen)

 \dots eine Sprache L entscheidbar ist?

... eine Sprache *L* entscheidbar ist?

- ✓ TM (bzw Algorithmus) angeben, die L entscheidet (akzeptiert und immer hält)
- Reduktion (muss nicht poly-many-one sein) auf bekanntermaßen entscheidbare Sprache L' angeben: $L \le L'$ (vermutlich unnötig kompliziert)

 \dots eine Sprache L semi-entscheidbar ist?

... eine Sprache *L* semi-entscheidbar ist?

- ✓ TM angeben, die *L* erkennt (akzeptiert und für jedes Wort aus *L* hält)
- **3** Grammatik G angeben, sodass L(G) = L (vermutlich unnötig kompliziert)
- Reduktion (muss nicht poly-many-one sein) auf bekanntermaßen semi-entscheidbare Sprache L' (zB HALT) angeben: $L \leq L'$ (vermutlich unnötig kompliziert)

... eine Sprache L nicht entscheidbar (unentscheidbar) ist?

 \dots eine Sprache L nicht entscheidbar (unentscheidbar) ist?

- ✓ Annehmen, dass L entscheidbar ist (⇒ Entscheider und Enumerator existieren) und zum Widerspruch führen
- ✓ Zeigen, dass ein Entscheider für *L* eine bekanntermaßen unentscheidbare Sprache (zB HALT) entscheiden könnte
- √ Falls bereits bekannt ist, dass L^C nicht entscheidbar ist, kann L auch nicht entscheidbar sein
- X Entscheider für L angeben, der nicht funktioniert

... eine Sprache *L* nicht semi-entscheidbar ist?

... eine Sprache *L* nicht semi-entscheidbar ist?

- ✓ Annehmen, dass L semi-entscheidbar ist (\Rightarrow Akzeptor und Enumerator existieren) und zum Widerspruch führen
- ✓ Zeigen, dass ein Akzeptor für L eine bekanntermaßen nicht semientscheidbar Sprache (zB L_d) erkennen könnte
- ✓ Falls bereits bekannt ist, dass L nicht entscheidbar und L^{C} semientscheidbar ist, kann L nicht semi-entscheidbar sein (sonst wäre L entscheidbar)
- X Akzeptor für L angeben, der nicht funktioniert

... eine Sprache $L \in \mathcal{P}$ ist?

... eine Sprache $L \in \mathcal{P}$ ist?

- ✓ Deterministische Turingmaschine (bzw Algorithmus) angeben, die *L* in Polynomialzeit entscheidet
- Poly-many-one Reduktion auf Sprache $L' \in \mathcal{P}$ angeben, also zeigen dass $L \leq_{\mathbb{D}} L'$ (vermutlich unnötig kompliziert)

... unter der Annahme, dass $\mathcal{P} \neq \mathcal{NP}$, eine Sprache $L \notin \mathcal{P}$ ist?

... unter der Annahme, dass $\mathcal{P} \neq \mathcal{NP}$, eine Sprache $L \notin \mathcal{P}$ ist?

✓ Zeigen, dass $L \in \mathcal{NPC}$ (bzw \mathcal{NP} -hart)

... eine Sprache $L \in \mathcal{NP}$ ist?

... eine Sprache $L \in \mathcal{NP}$ ist?

- ✓ Deterministische Turingmaschine (bzw Algorithmus) angeben, die einen Zeugen für *L* in Polynomialzeit verifiziert (Verifizierer).
 - Keine Prüfung vergessen (auch nicht die trivialen)!
- ✓ Nichtdeterministische Turingmaschine angeben, die *L* in Polynomialzeit entscheidet (Entscheider).
- Deterministische Turingmaschine (bzw Algorithmus) angeben, die L in Polynomialzeit entscheidet.
 - Nicht falsch, aber iA nur möglich, falls nebenbei auch $\mathcal{P} = \mathcal{N}\mathcal{P}$ bewiesen wird, was nicht realistisch ist. In jedem Fall unnötig kompliziert.
- *⊙* Poly-many-one Reduktion auf Sprache $L' \in \mathcal{NP}$ angeben, also zeigen dass $L \leq_p L'$ (vermutlich unnötig kompliziert)

... eine Sprache $L \in \mathcal{NPC}$ ist?

... eine Sprache $L \in \mathcal{NPC}$ ist?

- ✓ 1. Zeigen, dass $L \in \mathcal{NP}$
 - 2. Reduktion $L \ge_p \cdots \ge_p SAT$

... es unter der Annahme, dass $\mathcal{P} \neq \mathcal{NP}$, für ein Problem Π keinen ϵ -approximativen Algorithmus mit polynomieller Laufzeit geben kann?

... es unter der Annahme, dass $\mathcal{P} \neq \mathcal{NP}$, für ein Problem Π keinen ϵ -approximativen Algorithmus mit polynomieller Laufzeit geben kann?

✓ Zeigen, dass ein solcher Algorithmus verwendet werden könnte, um ein $L \in \mathcal{NPC}$ in Polynomialzeit zu entscheiden. Häufig bietet es sich an, die Entscheidungssprache zu verwenden, durch deren Reduktion bereits gezeigt wurde, dass die Entscheidungssprache zu Π \mathcal{NP} -vollständig ist.

Das funktioniert natürlich analog auch für α -Approximierbarkeit (mit gegebenem festem $\alpha \in \mathbb{R}^+$) und für absolute Gütegarantien. Siehe die Beispiele, die wir im Laufe des Semesters zu BINPACKING, TSP und CLIQUE betrachtet haben.

... eine Sprachklasse \mathcal{L} abgeschlossen ist unter einer Verknüpfung \circ ?

... eine Sprachklasse $\mathcal L$ abgeschlossen ist unter einer Verknüpfung \circ ?

- ✓ Konstruktiver Beweis:
 - 1. Seien $L_1, L_2 \in \mathcal{L}$ beliebig aber fest.
 - 2. Dann existieren Maschinen X_1 und X_2 mit diesen und jenen Eigenschaften (je nach \mathcal{L}) für L_1 und L_2 , dh $L(X_1) = L_1$ und $L(X_2) = L_2$.
 - 3. Konstruiere aus X_1 und X_2 eine neue Maschine X mit diesen und jenen Eigenschaften für $L_1 \circ L_2$, also $L(X) = L_1 \circ L_2$.
- ✓ Argumentation über Mengenarithmetik (wenn die Abschlusseigenschaften anderer Verküpfungen bereits bekennt sind).

... eine Sprachklasse $\mathcal L$ nicht abgeschlossen ist unter einer Verknüpfung \circ ?

... eine Sprachklasse $\mathcal L$ nicht abgeschlossen ist unter einer Verknüpfung \circ ?

- ✓ Widerspruchsbeweis:
 - 1. Wähle $L_1, L_2 \in \mathcal{L}$
 - 2. Zeige, dass $L_1 \circ L_2 \notin \mathcal{L}$
- ✓ Argumentation über Mengenarithmetik (wenn die Abschlusseigenschaften anderer Verküpfungen bereits bekennt sind).

... $\exists x \in M : p(x)$ für eine Menge M und ein unäres Prädikat p?

... $\exists x \in M : p(x)$ für eine Menge M und ein unäres Prädikat p?

Ein Beispiel für ein solches x angeben (konstruktiver Beweis)

... $\forall x \in M : p(x)$ für eine Menge M und ein unäres Prädikat p?

... $\forall x \in M : p(x)$ für eine Menge M und ein unäres Prädikat p?

- ✓ Annehmen, $\exists x \in M : \neg p(x)$ und zum Widerspruch führen (Widerspruchsbeweis).
- ✓ Falls M abzählbar und < eine totale Ordnung auf M ist: Zeige $p(x_0)$ für ein $x_0 \in M$ und alle $\{x' \in M : x' < x_0\}$ sowie, dass für alle $x_1, x_2 \in M$ mit $x_0 \le x_1 \le x_2$ gilt: $p(x_1) \Rightarrow p(x_2)$ (Induktionsbweis).
- ✓ Zeigen, dass $M = \emptyset$ (eher ein schlechter Witz)
- X Ein Beispiel für ein solches x angeben